
N. Gu, S. Watanabe, H. Erhan, H. Haeusler, W. Huang (eds.), Rethinking Comprehensive Design: Specu-
lative Counterculture, Proceedings of the 19th International Conference of the Association of Computer-
Aided Architectural Design Research in Asia CAADRIA 2014, 000–000. © 2014, The Association for
Computer-Aided Architectural Design Research in Asia (CAADRIA), Kyoto, JAPAN

DIGITAL MINDS, MATERIALS, AND ETHICS:
LINKING COMPUTATIONAL THINKING AND
DIGITAL CRAFT

NICHOLAS SENSKE
University of North Carolina at Charlotte, Charlotte, NC, USA
nsenske@uncc.edu

Abstract. This paper describes the connections between computation-
al thinking and digital craft, and proposes several ways that architec-
tural education can cultivate better digital craft, specifically: motivat-
ing the use of computational strategies, encouraging a conceptual
understanding of computing as a medium, teaching computer pro-
gramming, and discussing digital ethics. For the most part, these sub-
jects are not widely taught in architecture schools. However, moving
forward, if the profession values good design, it must also value good
digital craft, and ought to instil a way of working in the next genera-
tion of architects that makes the most of both the computer and the de-
signer. Computational thinking provides a common foundation for de-
fining and instilling this critical mindset and, therefore, deserves
greater consideration within architectural pedagogy.

Keywords. Digital craft; computational thinking; ethics

1. Introduction

Digital craft is a still-evolving notion in architecture. The discipline has not
yet reached the point where a majority of architects can recognize and ap-
preciate the craft of procedural logic within a parametric model (to give one
example), the same as they might assess and value the craft of a physical ar-
tifact. Architects understand even less about digital craft as a process. What
sort of mindset do the best digital designers bring into their work with the
computer? How are their methods different from typical software users?
This paper considers these questions and proposes that computational think-
ing, a fundamental understanding of the principles of computing as they ap-
ply to one’s work (Wing, 2006), is essential to defining and producing good
digital craft. This proposal has repercussions for how architects create with

2 N. SENSKE

all forms of computing and suggests a basis for a more progressive pedagogy
of digital skills within architectural education.

2. Thoughtful effort – computational strategies and the digital mindset

According to Richard Sennet, one of the ways a craftsman distinguishes
himself from the average worker is through the application of thoughtful ef-
fort to the task at hand: using tools with the minimum amount of effort while
producing the maximum result (2008). This economy arises not only because
the craftsman knows the most effective techniques, but also because he has a
sense of his work and his medium that guides him in applying these tech-
niques. Working in this manner is not automatic, as it might appear. Good
craft requires a conscious choice on the part of the craftsman. When it comes
to computing, the vast majority of architects seem to lack this kind of sensi-
bility. They can use software, but their methods are seldom the most effi-
cient and effective for the task. Few of them truly care or even acknowledge
the difference. In this sense, their craftsmanship with the computer is poor.

Given the considerable amount of time that the average architect spends
at the computer, it is surprising that so few come to develop good digital
craft. However, for most computer users, experience with software does not
correlate with more thoughtful effort. Some evidence for this comes from
human-computer interaction (HCI) research. For instance, two seminal stud-
ies by Rosson (1983) and Nilsen et al. (1993) examined skill development
with office software (a word-processor and spreadsheet, respectively) over
many months. They found that while users did improve their task perfor-
mance over time, most of their gains came from faster command selection
and keystroke times. The studies also identified expert users who performed
significantly better than experienced users – often several times better. Ros-
son and Nilsen found that these differences were not because the experts
were the fastest with the mouse and keyboard. Instead, they worked differ-
ently, utilizing more sophisticated commands and more effective command
sequences to accomplish tasks with fewer operations. In other words, expert
users were more thoughtful about their work.

The HCI studies document typical user behavior. Most people learn how
operate software, and improve their performance with it by learning how to
use more commands or work faster, rather than learning more powerful
strategies. To give an example, an experienced designer might be able to
spend hours in a vector drawing program, repeating the same sequence of
commands over and over to create one version of an intricate pattern. While
it might accomplish the goal, this method does not make sense when most

 DIGITAL MINDS, MATERIALS, AND ETHICS 3

programs allow sequences of commands to be recorded, automated, and
modified, which is a far more efficient and flexible way of developing a de-
sign. However, these operations are oftentimes hidden beneath the surface
functions of the program and might never be discovered, even by those with
significant experience. Nevertheless, they exist because they are fundamen-
tal to the nature of computing. Computational thinking would teach students
that these operations exist, or else provoke a search for them within the
software. The powerful strategies of expert computer users are derived from
these computational attributes of software: exploiting automation, dependen-
cies, and propagation, structuring information, filtering, etc. Knowledge of
computational strategies is precisely what is missing in many architects’ ap-
proach to computing.

What prevents architects from learning computational strategies and im-
proving their craft? One explanation is that learning computers tends to be
task-oriented and ad hoc. Architects have limited time to meet their many
deadlines. This makes them tend to focus on learning new commands and
accomplishing the task at hand rather than learning the most effective ways
to use their software – in other words, good craft. Carroll and Rosson (1987)
identified this trait in computer users as production bias. Architects have
been shown to demonstrate this bias (Bhavnani, 1996). There is not much
incentive for architects to think deeply about computing as, in their minds,
they can only afford to be interested in what is necessary to get the job done.
Since command-level knowledge appears to be good enough for their needs,
architects tend to limit their actions to what they already know how to do,
rather than deliberately trying to improve their performance.

Even if a person has been shown more effective processes, production bi-
as is difficult to overcome. Pea’s 1983 study of students learning LOGO
programming illustrates how knowledge of computational methods is neces-
sary, but not sufficient for performance improvement (ibid.). Pea’s students
were taught about looping structures, but, in their programs, most defaulted
to writing and modifying lists, line-by-line. This is a more explicit, but far
less powerful method than implementing a simple algorithm. When the stu-
dents where asked why they did this, one replied that it was “easier to do it
the hard way.” In this particular student’s mind, it was less work to write
everything out and change each statement manually than to plan and imple-
ment a procedural representation. The benefits did not seem to outweigh the
assumed cognitive and time costs. This may explain why many architects
fail to develop better digital craft.

To prevent this from happening, architects need to acquire the craftsper-
son’s mindset for recognizing and choosing the best technique. They must

4 N. SENSKE

learn how to consciously think about the way they work at the computer.
The research of Bhavnani, John, and Flemming illustrates how this can be
taught within in an architectural context1. By articulating computational
strategies and explicitly teaching why and when they apply, their work
demonstrates how novices can obtain the expert performance of a craftsman
in a relatively short amount of time. To achieve this, Bhavnani and John
compiled a set of strategies for CAD by conducting a cognitive task analysis
of drawing activities (Bhavnani and John, 1997). When novice CAD users
received training in the strategies, they were found to perform complex
drawing tasks in less time and with more accuracy than users who learned
only commands (Bhavnani et al., 1999). In later comparative studies, Bhav-
nani and his colleagues went on to repeat this training effect in users of other
kinds of authoring software such as Unix, Microsoft Office, and Dream-
weaver (Bhavnani et al., 2008). This research might seem less poetic than an
intimate internship with a master digital craftsperson, but the authors’ ability
to instill a sense of thoughtful effort in large groups of users is noteworthy.
Their research suggests that teaching good digital craft to large numbers of
students at a time is possible within a standard curriculum.

Ask an architect whether digital craft is important and most will answer
in the affirmative. However, craft is seldom emphasized in the way that ar-
chitects learn computing. Most computing courses, tutorials, and books fo-
cus on the purely operational details of software — which are not difficult to
teach and learn (Pea, 1983; Soloway, 1986; Kay 1993)— and do little to cul-
tivate a sense for what it means to use a computer well. To change this, edu-
cators must teach computational thinking: demonstrating computational
strategies and encouraging students to use them by motivating deliberate
practice. If students can be shown the advantages of thoughtful effort, they
will be more likely to overcome their production bias and their craft may
improve.

3. Material intimacy – mental models, computational concepts, & code

Besides technical skills, the craftsperson is intimately acquainted with her
chosen medium. Adapting to the constraints and opportunities of the medi-
um, rather than slavishly following procedures, leads to improvisation and
innovation. This responsiveness is recognized as a mark of true craftsman-
ship. Unfortunately, most users have a superficial understanding of the digi-
tal medium (Sheil, 1983). Generally speaking, they do not understand that
the details of what happens inside of the computer — which seem unim-
portant — are, in fact, critical to making the best use of one’s time and ef-

 DIGITAL MINDS, MATERIALS, AND ETHICS 5

fort. Because many architects do not speak the fundamental language of
computational concepts, structures, and code, most digital work tends to be
rote and superficial, the very antithesis of good craft.

Evidence of this can be found in the upper-year studios at most any archi-
tecture school. There, one will often see the same formal tropes repeated
time and again – out of control NURBS surfaces, attractor fields, Voronoi
tiling, and so forth. This “computational aesthetic” may be the product of
fashion, but it is also due to the narrow perspective many students have re-
garding computing. A criticism of contemporary digital design is that it
tends to draw from a limited set of algorithms and techniques (Watz, 2009).
One can often determine which software created which forms. Such rigid
and unoriginal expression runs contrary to the powerful flexibility and open-
endedness of the medium. Where is the craft?

Reflecting on the use of software by artists and designers, John Maeda
once said “skill in the digital sense is nothing more than knowledge, and we
implicitly glorify rote memorization as the basis of skill for a digital designer
(1999).” Most computing and programming courses (and their learning ma-
terials) over-emphasize command knowledge and syntax (Robins et al, 2003;
Lockhard, 1986; Kölling, 2003). While the software controls must be
learned, this alone does not help students develop a sense of the digital me-
dium underlying their work. What they pick up from courses, books, online
tutorials, and each other are piecemeal techniques, disconnected from the big
ideas of computation. And so, students tend to copy solutions and call upon
aesthetics without an understanding of how these work or where and when
they apply.

This dependency on rote patterns contributes to a “plug and chug” men-
tality towards digital design. Because the architect has no grasp of first prin-
ciples and no sense of what it means to think computationally2, the only an-
swer seems to be to try all known procedures or to make the design fit one of
them. In this sense, the architect who simply knows a large number of pro-
cedures may feel skilled. However, as anyone who plugged and chugged his
way through math or physics class knows, this does not represent under-
standing. It is not an effective practice in all circumstances and not condu-
cive to producing original ideas.

The problem is that may architects tend to focus on command recall and
either ignore – or have difficulty visualizing – structure within the symbolic
context of the computer. As Malcolm McCullough (1998) explains in Ab-
stracting Craft, possessing a mental model is the key difference between
mindless rote work and mindful practice. To understand operations concep-
tually, a designer needs to internalize a high-level model of the computer and

6 N. SENSKE

its software. This includes things like system state, but also a sense of the
program’s data structure and procedural flow. Designers who have a mental
model are able to choose or plan their actions, rather than following prede-
fined, brittle routines. They can anticipate the output of an operation and
make judgments without running the full program. In short, they have the
sort of intuition that separates experts from unskilled and undisciplined us-
ers. Any notion of craft or thoughtfulness with design software requires a ro-
bust mental model.

Another cause of poor digital craft could be that architects do not under-
stand what is happening computationally while they are using software. Pea
and Kurkland (1984) refer to this as “production without comprehension.”
To cite a specific example: The author once had a student who encountered a
problem while making a digital model. Suddenly, for no apparent reason, her
program began to create geometry upside down. She tried toggling a series
of settings, but because she did not know the nature of the (seemingly)
strange behavior, or the functions of many of the settings, she did not get far
in her efforts. After several minutes of this, she overcame the problem by
continuing to make the upside-down geometry and then manually flipping it
to the correct orientation. This kind of experience is common, and it illus-
trates how students who spend years in school working with software often
maintain unclear ideas about how it works. The author has observed other
students respond to the same problem by creating an upside-down camera.
Some even resort to recreating the model in a new file3. These methods are
adaptations to what appears to be a software bug. However, the program is
not broken, as the students suspect. They are simply misusing it.

The modeling problem occurred because the internal state of the program
changed. The coordinate system was reversed; probably by an errant key-
stroke. The students ran into trouble because they did not know anything
about the system beyond the interface and their 3D model. Only what was
visible on the screen seemed immediately important to them. This surface-
level mindset extended to their response. The only way they knew how to
address the problem was through their knowledge of commands: e.g. flip-
ping the geometry, making a different camera, and starting a new file. Grant-
ed, these responses are solutions or adaptations of a sort –the students were
able to keep working—but valuable time was wasted because they did not
comprehend the problem well enough to come up with the correct solution.
What they saw as a bug was actually a different state within the system,
which they failed to manage.

In the above example, the students made models with the computer, but
did not comprehend the system they were using to create them. Their prob-

 DIGITAL MINDS, MATERIALS, AND ETHICS 7

lems illustrate how the inability to visualize and reason computationally can
result in poor digital craft. Why is it so difficult for the average user to figure
out these systems? The problem is one of abstraction and transparency.
Whether it is a CAD program, a spreadsheet, or a word processor, most
software is a “black box.” The user can interact with the interface on the out-
side, but the internal logic remains hidden. This makes it difficult, if not im-
possible, to understand how or why the program works, which can lead to
misconceptions about what the computer is doing (Sheil, 1983; Norman,
1988). The user, expecting a simple cause-and-effect relationship between an
action and a response, may not be aware of the procedural logic involved.
For instance, the computational state of the software may have been affected
by an earlier operation. As described in the example of the upside-down
model, a user who does not understand this might interpret future results as
erroneous, when these are logical within the system (Blackwell, 2002).
Without a computational mindset, the user has no way to properly diagnose
the source of the problem. Attempts to fix the problem might involve ran-
domly toggling options and strange workarounds. Thus, a lack of awareness
regarding the digital medium often results in haphazard, undisciplined user
behavior. In this manner, poor craft can lead to lost productivity and, poten-
tially, designs of poor quality.

A good mental model can help guide how a person uses the computer, but
this only addresses part of the problem. Another cause of rote work is an atti-
tude that views computational processes as static and linear; a recipe to ob-
tain a certain result rather than something to be explored and refined itself.
Because computers can become nearly anything, restricting oneself to a
fixed palette of tools and techniques is missing out on the medium’s poten-
tial. An architect who does not take advantage of modifying their tools — to
overcome limitations or to explore— is severely limited.

Although most people do not think about it this way, programming is an
important skill for making effective use of almost any software and express-
ing computational thinking. Knowing how to code is indispensable part of
learning and practicing good digital craft.

Unfortunately, many still believe that teaching architects to write pro-
grams – even small scripts – is unnecessary and too much additional work.
However, others argue that the benefits are worth the effort. Reas and Fry
(2006) observe that it was not unusual in the past for artists to mix their own
pigments or prepare brushes to get the effect they wanted in their work. Be-
sides giving them more control, these tasks gave the artist a greater intimacy
with the material. Reas and Fry contend that, in a similar manner, making
digital tools can give designers a sense of the computer as a material. And

8 N. SENSKE

so, programming knowledge can help architects regain some control and
ownership over how they work with computers, making them less of an op-
erator and more of a craftsperson.

4. Computing ethics – what-for, avoiding distractions, respecting human
values

Another aspect of good craftsmanship is the ethic that one brings into
their work. It is not enough to have “know-how.” Good craft must also an-
swer the questions of “why” and “what-for.” Taking part in a craft’s culture
involves learning its ethics. For instance, there are norms of appropriateness,
constructive aims, and good taste associated with various styles of writing. It
is fair to assume that the same is true for computing. However, computing
ethics are seldom articulated, discussed, or enforced. Thus, a lack of a com-
monly shared ethic is another cause of poor digital craft.

Good digital craft demands a philosophy of why, when, and how one
should engage (or not engage) in computing. This is not something that
many users consider. There is often an assumption that if something can be
done on a computer, then it probably should be. This is untrue, of course.
Ethics are needed because the capabilities of computing can be a source of
distraction.

One example of this distraction is when learning new technology gets in
the way of learning and making architecture (McCullough, 1996). Some stu-
dents spend so much of their time attempting to master the latest tools and
software that quality, engagement, and common sense get left behind. Over-
shadowed by the pursuit of methodology, design projects become one-liners,
or worse, go incomplete; the means become the end. Without digital ethics,
it is far too easy to get carried away and use the computer to make things
overly complicated, garish, and wasteful.

To give another example of the need for ethics, sophisticated computer
programs, such as those that perform environmental analysis, are increasing-
ly used by our students as part of their design projects. A problem is that
students often abuse these by offloading much of their thinking to algo-
rithms. They forget (or seem to disregard) that programs cannot synthesize
output and make decisions; that simulations do not automatically design a
good building. Over-dependence on programmed logic can cause a person to
think deterministically, to depend too much upon systems as the only source
of design solutions rather than intuition and sensibility. More importantly,
too much faith in algorithms can make a person overlook when the solution
is simply wrong. Like the proverbial drunk looking for his keys, many stu-

 DIGITAL MINDS, MATERIALS, AND ETHICS 9

dents confine their searches beneath the streetlight of computing. They lack
a sense of ethics in their craft.

An ethical perspective recognizes the different strengths of both people
and computation. This is critical if architects are to engage the full potential
of computers in a manner that respects human values and intentionality.
Recognizing the unique contributions of humans and computers within de-
sign is a critical insight for architects to comprehend. At the moment, this
subject does not receive enough attention within architecture. While argu-
ments over analog versus digital methods are familiar territory, these tend to
revolve around traditions of drawing and modeling. Less common are seri-
ous discussions about the roles of human and machine thinking in architec-
ture, now that the automation of design and production has entered into
widespread use. To prevent logic from getting in the way of design, schools
and professionals need to articulate and discuss the limitations and pitfalls of
computing.

5. Conclusion

This paper described the connections between computational thinking
and digital craft, and proposed several ways that architectural education can
cultivate better digital craft, specifically: motivating the use of computation-
al strategies, encouraging a conceptual understanding of computing as a me-
dium, teaching computer programming, and discussing digital ethics. These
subjects are not widely taught in architecture schools. However, moving
forward, if the profession values good design, it must also value good digital
craft, and ought to instil a way of working in the next generation of archi-
tects that makes the most of both the computer and the designer. Computa-
tional thinking provides a common foundation for defining and instilling this
critical mindset and, therefore, deserves greater consideration within archi-
tectural pedagogy.

Endnotes
1. For a full summary, see (Bhavnani and John, 2000).
2. By which I mean, one does not have a computational design process: a sense of how

to apply first principles to produce a solution. The only strategies one knows are ex-
haustive ones such as pattern matching and random trial and error.

3. This technique succeeds because it resets the system state.

References
A Bhavnani, S. K.:1996, CAD usage in an architectural office: from observations to active

assistance, Automation in Construction, 5: 243-255.

10 N. SENSKE

Bhavnani, S. K. and B. E. John: 1997, From Sufficient to Efficient Usage: An Analysis of

Strategic Knowledge, Proceedings of CHI '97 Conference on Human Factors in Compu-
ting Systems, 91-98.

Bhavnani, S. K., B. E. John, et al.: 1999, The strategic use of CAD: an empirically inspired,
theory-based course, in Proceedings of the SIGCHI conference on Human factors in com-
puting systems, Pittsburgh, Pennsylvania, United States, ACM.

Bhavnani, S. K. and B. E. John: 2000, The strategic use of complex computer systems, Hu-
man-Computer Interaction 15: 107-137.

Bhavnani, S. K., F. A. Peck, et al.: 2008. "Strategy-Based Instruction: Lessons Learned in
Teaching the Effective and Efficient Use of Computer Applications." ACM Transactions
in Computer-Human Interaction 15(1): 1-43.

Blackwell, A. F.: 2002, What is Programming?, 14th Workshop of the Psychology of Pro-
gramming Interest Group, Brunel University.

Burry, M.: 2011, Scripting Cultures, Chichester, Wiley.
Carroll, J. M. and M. B. Rosson: 1987, Paradox of the Active User, Interfacing thought: Cog-

nitive aspects of human-computer interaction, in J. M. Carroll. (Ed.) Cambridge, MA,
MIT Press, 80-111.

Kay, A.: 1993, The Early History of Smalltalk, ACM SIGPLAN Notices, 28(3), 69-95.
Kölling, M.: 2003, The curse of hello world, Workshop on Learning and Teaching Object-

orientation - Scandinavian Perspectives, Oslo.
Lockard, J.: 1986, Computer programming in the schools: What should be taught?, Comput-

ers in the Schools, 2(4), 105-113.
Maeda, J.: 1999, Design by Numbers, Cambridge, MIT Press.
Maeda, J.: 2004, Creative Code, New York, Thames & Hudson.
Mateas, M. and A. Stern: 2005, Procedural Authorship: A Case Study of the Interactive Dra-

ma Façade, Digital Arts and Culture (DAC), Copenhagen.
McCullough, M.: 1998, Abstracting Craft, Cambridge, MIT Press.
McCullough, M.: 2006, 20 Years of Scripted Space, Architectural Design, 76(4): 12-15.
Nilsen, E., H. Jong, et al.: 1993, The growth of software skill: a longitudinal look at learning

& performance, Proceedings of the INTERACT '93 and CHI '93 conference on Human
factors in computing systems, Amsterdam, The Netherlands, ACM.

Norman, D. A.: 1988, The Design of Everyday Things, New York, Doubleday.
Pea, R. D.: 1983, Logo Programming and Problem Solving [Technical Report No. 12.], Amer-

ican Educational Research Association Symposium. Montreal, Canada.
Pea, R. D. and D. M. Kurkland: 1984, On the cognitive effects of learning computer pro-

gramming, New Ideas in Psychology, 2, 137-168.
Perkins, D. N. and G. Salomon: 1989, Are Cognitive Skills Context-Bound?, Educational Re-

searcher, 18(1), 16-25.
Reas, C. and B. Fry: 2006, Processing: programming for the media arts, AI & Society, 20(4),

526-538.
Robins, A., J. Rountree, et al.: 2003, Learning and teaching programming: a review and dis-

cussion, Computer Science Education, 13(2), 137-172.
Rosson, M.:1983, Patterns of experience in text editing, in Proceedings of CHI '83 Confer-

ence on Human Factors in Computing Systems, 171-175.
Sennet, R.: 2008, The Craftsman, Yale University Press, New Haven.
Sheil, B. A.: 1983, Coping with Complexity, Information Technology & People, 1(4): 295-

320.
Soloway, E.: 1986, Learning to program = learning to construct mechanisms and explana-

tions, Communications of the ACM, 29, 850-858.
Watz, M.: 2012, The Algorithm Thought Police, http://mariuswatz.com/mwatztumblrcom/the-

algorithm-thought-police.html. Accessed January 23, 2014.
Wing, J. M.: 2006, Computational Thinking, Communications of the ACM, 49(3), 33-36.

